organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Vadivelu Manivannan,^a Nagarajan Vembu,^{b,c}* Maruthai Nallu,^b Kandasamy Sivakumar^d and Frank R. Fronczek^e

^aDepartment of Physics, Presidency College, Chennai 600 005, India, ^bDepartment of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India, ^cDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, Tamil Nadu, India, ^dDepartment of Physics, Anna University, Chennai 600 025, India, and ^eDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

Correspondence e-mail: vembu57@yahoo.com

Key indicators

Single-crystal X-ray study T = 150 KMean $\sigma(\text{C-C}) = 0.003 \text{ Å}$ R factor = 0.039 wR factor = 0.083 Data-to-parameter ratio = 20.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

4-Methylphenyl 4-toluenesulfonate: supramolecular aggregation through weak C—H \cdots O and C—H \cdots π interactions

In the crystal structure of the title compound, $C_{14}H_{14}O_3S$, the dihedral angle between the mean planes of the two rings is 51.97 (8)°. There are weak C-H···O hydrogen bonds which generate rings of graph-set motifs S(5), S(6), $R_1^2(4)$ and $R_2^1(9)$. The supramolecular aggregation is completed by the presence of C-H··· π interactions.

Received 14 December 2004 Accepted 16 December 2004 Online 8 January 2005

Comment

Aromatic sulfonates are used in monitoring the merging of lipids (Yachi et al., 1989) and in many other fields (Spungin et al., 1992; Tharakan et al., 1992; Alford et al., 1991; Jiang et al., 1990; Narayanan & Krakow, 1983); for example, 1-anilino-8naphthalenesulfonate, an aromatic sulfonate is used in monitoring the merging of lipids in the binding of Rose bengal, a model organic anion, to sinusoidal and bile canalicular membrane fractions isolated from rat liver. The crystal structure of the title compound, (I), was determined because of the biological importance of its analogues. A search of Version 5.23 (July 2002 updates) of the Cambridge Structural Database (Allen, 2002) revealed 16 structures (refcodes KAWDAN, FIXCAQ, NEDXUP, NEDYAW, NEDYIE, NUNCII, RASSOT, RELVUZ, SIMVUF, TCPTOS, TEBFOV, TMPDTS, TSMIPH, WOHCUR, ZZZBDA10 and MIWHIJ) that are closely related to the title compound. The S-C, S-O and S=O bond lengths (Table 1) are comparable to those found in related structures in that they all contain the p-toluenesulfonyl group (Vembu, Nallu, Garrison & Youngs, 2003a,b,c,d,e,f; Vembu, Nallu, Spencer & Howard, 2003ab,c,d,e,f,g; Vembu, Nallu, Garrison, Hindi & Youngs (2003; Vembu, Nallu, Durmus, Panzner, Garrison & Youngs, 2004*a*,*b*,*c*).

The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters are given in Table 1. The dihedral angle between the mean planes of the two rings is $51.97 (8)^{\circ}$. This shows their non-coplanar orientation, similar to that reported for other aromatic sulfonates (Vembu, Nallu, Garrison & Youngs, 2003b,c,d,e; Vembu, Nallu, Spencer & Howard, 2003a,b,c,d,f,g; Vembu, Nallu, Durmus, Panzner, Garrison & Youngs, 2004a,b,c) and in contrast to the nearcoplanar orientation observed in 2,4-dinitrophenyl 4toluenesulfonate (Vembu, Nallu, Garrison & Youngs, 2003a), (Vembu, 4-methoxyphenyl 4-toluenesulfonate Nallu. Garrison, Hindi & Youngs, 2003) and 8-quinolyl 3-nitrobenzenesulfonate (Vembu, Nallu, Spencer & Howard, 2003e).

The molecular structure of the title molecule, showing 50% probability displacement ellipsoids. H atoms have been omitted.

A Newman projection along the S–O bond.

In Fig. 2, the molecule is viewed along the S-O bond taking C8 as reference. The orientations of the two sulfonyl atoms O1 and O2 and the tolyl carbon C1, attached to sulfur, have been deduced from the corresponding torsion angles (C8-O3-S1-O1/O2/C1) and depicted in Fig. 2. Since the C1-S1-O3-C8 torsion angle is $64.0(2)^\circ$, which corresponds to a +synclinal disposition, the two aromatic planes are, as expected, not coplanar [51.97 (8) $^{\circ}$].

The crystal structure of (I) is stabilized by weak $C-H \cdots O$ interactions (Table 2). The $H \cdot \cdot \cdot O$ distances in (I) agree with those found for weak $C-H \cdots O$ bonds (Desiraju & Steiner, 1999). In (I), each of the C2-H2···O2 and C6-H6···O1 interactions generates an S(5) graph-set motif (Bernstein et al., 1995; Etter, 1990). The C9-H9 \cdots O2 interaction generates an S(6) motif. The C2-H2···O2 and C9-H9···O2 interactions together constitute a pair of bifurcated acceptor bonds.

The $C3-H3\cdots O1^{i}$ and $C3-H3\cdots O3^{i}$ interactions constitute a pair of bifurcated donor bonds, generating an $R_1^2(4)$ chelate motif. The C6–H6…O2ⁱⁱ and C13–H13…O2ⁱⁱ interactions form a pair of bifurcated acceptor bonds, generating an $R_2^1(9)$ motif.

Packing of the the title molecule, viewed down the c axis

There are a few other C-H···O and C-H··· π and interactions which contribute to the supramolecular aggregation (Fig. 3) of the title compound.

Experimental

4-Toluenesulfonyl chloride (4.7 mmol) dissolved in acetone (4 ml) was added dropwise to 4-cresol (4.3 mmol) in aqueous NaOH (2.5 ml, 10%) with constant shaking. The precipitated title compound (2.9 mmol, yield 67%) was filtered off and recrystallized from aqueous ethanol.

Crystal data

$C_{14}H_{14}O_3S$	Mo $K\alpha$ radiation
$M_r = 262.31$	Cell parameters from 11 929
Orthorhombic, <i>Pca</i> 2 ₁	reflections
$a = 27.6120 (2) \text{\AA}$	$\theta = 2.5 - 30.0^{\circ}$
p = 7.9470(3) Å	$\mu = 0.24 \text{ mm}^{-1}$
r = 5.9770 (10) Å	T = 150 (2) K
$V = 1311.5 (2) \text{ Å}^3$	Plate, colorless
Z = 4	$0.37 \times 0.20 \times 0.02 \text{ mm}$
$D_x = 1.328 \text{ Mg m}^{-3}$	

Data collection

Nonius KappaCCD diffractometer	19 182 measured reflections
with an Oxford Cryosystems	3402 independent reflections
Cryostream cooler	1991 reflections with $I > 2\sigma(I)$
ω scans with κ offsets	$\theta_{\rm max} = 30.0^{\circ}$
Absorption correction: multi-scan	$h = 0 \rightarrow 37$
(SCALEPACK; Otwinowski &	$k = 0 \rightarrow 11$
Minor, 1997)	$l = -8 \rightarrow 8$
$T_{\min} = 0.926, T_{\max} = 0.995$	

 $I > 2\sigma(I)$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0392P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.039$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.083$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 0.85	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
3402 reflections	$\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$
167 parameters	Absolute structure: Flack (1983),
H-atom parameters not refined	2093 Friedel pairs
	Flack parameter $= 0.36$ (8)

Table 1

Selected geometric parameters (Å, °).

1.4153 (14)	S1-C1	1.749 (2)
1.4199 (16)	O3-C8	1.415 (2)
1.6023 (15)		
120.89 (12)	O2-S1-C1	109.12 (10)
102.99 (9)	O3-S1-C1	103.59 (9)
108.15 (9)	C8-O3-S1	117.81 (12)
110.54 (10)		
179.25 (15)	C1-S1-O3-C8	64.02 (17)
-51.70 (16)		. ,
	$\begin{array}{c} 1.4153 (14) \\ 1.4199 (16) \\ 1.6023 (15) \\ 120.89 (12) \\ 102.99 (9) \\ 108.15 (9) \\ 110.54 (10) \\ 179.25 (15) \\ -51.70 (16) \end{array}$	$\begin{array}{cccc} 1.4153 (14) & S1-C1 \\ 1.4199 (16) & O3-C8 \\ 1.6023 (15) \\ 120.89 (12) & O2-S1-C1 \\ 102.99 (9) & O3-S1-C1 \\ 108.15 (9) & C8-O3-S1 \\ 110.54 (10) \\ 179.25 (15) & C1-S1-O3-C8 \\ -51.70 (16) \end{array}$

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C2-H2···O2	0.93	2.54	2.912 (2)	104
C6-H6···O1	0.93	2.75	3.036 (3)	99
C9−H9···O2	0.93	2.80	3.091 (3)	99
$C3-H3\cdots O1^{i}$	0.93	2.70	3.442 (2)	137
$C3-H3\cdots O3^i$	0.93	2.85	3.727 (2)	158
C6−H6···O2 ⁱⁱ	0.93	2.86	3.144 (3)	99
$C13-H13\cdots O2^{ii}$	0.93	2.60	3.506 (3)	166
$C7-H7A\cdots O1^{iii}$	0.96	2.54	3.428 (2)	154
$C7-H7B\cdots O1^{iv}$	0.96	3.00	3.566 (3)	119
$C5-H5\cdots Cg1^{iii}$	0.93	2.84	3.58	137
$C9-H9\cdots Cg2^{v}$	0.93	3.18	3.70	117
$C10-H10\cdots Cg2^{v}$	0.93	3.36	3.80	111

Symmetry codes: (i) x, y - 1, z; (ii) x, y, z - 1; (iii) $\frac{1}{2} - x, y - 1, z - \frac{1}{2}$; (iv) x, y - 1, z - 1; (v) $-x, 1 - y, \frac{1}{2} + z$. Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.

All H atoms were included in calculated positions, with aromatic C-H distances of 0.93 Å and methyl C-H distances of 0.96 Å, and refined as riding. Displacement parameters were refined for the aromatic and methyl groups. The Flack (1983) parameter, with low precision, indicates partial inversion twinning.

Data collection: *COLLECT* (Nonius, 1997); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL*97.

References

- Alford, R. L., Honda, S., Lawrence, C. B. & Belmont, J. W. (1991). Virology, 183, 611–619.
- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Flack, Π . D. (1985). Acta Cryst. A**39**, 870–881.
- Jiang, F. N., Jiang, S., Liu, D., Richter, A. & Levy, J. G. (1990). J. Immunol. Methods, 134, 139–149.
- Narayanan, C. S. & Krakow, J. S. (1983). Nucleic Acids Res. 11, 2701–2716.
- Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Spungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1992). *FEBS Lett.* **311**, 155–160.
- Tharakan, J., Highsmith, F., Clark, D. & Drohsn, W. (1992). J. Chromatogr. 595, 103–111.
- Vembu, N., Nallu, M., Durmus, S., Panzner, M., Garrison, J. & Youngs, W. J. (2004a). Acta Cryst. E60, 01–03.
- Vembu, N., Nallu, M., Durmus, S., Panzner, M., Garrison, J. & Youngs, W. J. (2004b). Acta Cryst. C60, o65–o68.
- Vembu, N., Nallu, M., Durmus, S., Panzner, M., Garrison, J. & Youngs, W. J. (2004c). Acta Cryst. C60, 0248–0251.
- Vembu, N., Nallu, M., Garrison, J. Hindi, K. & Youngs, W. J. (2003). Acta Cryst. E59, 0830–0832.
- Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003a). Acta Cryst. E59, 0378–0380.
- Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003b). Acta Cryst. E59, 0503–0505.
- Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003c). Acta Cryst. E59, 0776–0779.
- Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003d). Acta Cryst. E59, 0936–0938.
- Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003e). Acta Cryst. E59, 0939–0941.
- Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003f). Acta Cryst. E59, 01019–01021.
- Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003a). Acta Cryst. E59, 01009–01011.
- Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003b). Acta Cryst. E59, 01033–01035.
- Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003c). Acta Cryst. E59, o1213–o1215.
- Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003d). Acta Cryst. E59, o1216–o1219.
- Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003e). Acta Cryst. E59, 01379–01382.
- Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003f). Acta Cryst. E59, 01387–01389.
- Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003g). Acta Cryst. E59, 01390–01392.
- Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M. (1989). Biochim. Biophys. Acta, 978, 1–7.